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SUMMARY

An experimental program has been performed to investigate the
effects of particle size, dust cloud concentration and relative humidity
on the minimum concentration for explosion, minimum ignition energy
and minimum ignition temperature of M-1, M-30, Composition B and
HMX propellants and explosives.

Analysis of the results presented in Tables 6, 7 and 8 reveals that
the material most sensitive to thermal and electrical initiation sources
was M-1. M-30 was the second most sensitive, followed by Compo-
sition B and HMX. The minimum ignition eaergy was observed to
increase with increasing particle size, test chamber relative humidity,
and decreasing dust cloud concentration. Minimum ignition temperature
increased with increasing particle size,

It was also observed that as the particle size of M-1 and M-30 de-
creased below the 74 micron range, an electrostatic charging phenom-
enon caused the particles to agglomerate, This resulted in an
increase in the minimum concentration for explosion for the smaller
particle size ranges.

The data generated on this program should be used by the design
engineer in designing future production facilities and by the safety
engineer for his evaluation of existing production plants. An outgrowth
of this effort could be th= development of a monitoring device that
senses a dispersed dust cloud, compares its concentration to that re-
quired for ignition and takes appropriate action if a hazardous condition
exists,




INTRODUCTION

The objectives of this program were to investigate the effects of
particle size, dust cloud concentration and relative humidity of the
process air environment on the dust explosion characteristics of HMX,
Composition B, M-1 and M-30 explosives and propellants. Specifically,
the program was divided into three phases. The objectives of these
phases were:

Phase 1

a, Determine the effect of particle size on the minimum con-
centration for explosion at ambient air conditions.

b. Determine the effect of particle size on the minimum spark
ignition energy under arabiert air conditions at five times the minimum
concentration for explosion.

¢. Determine the effect of particle size on the rminimum ignition
temperatures of HMX, Composition B, M-1 and M~30 dust clouds.

Phese 2

Determine the effect of temperature, particle size and relative
hamidity on the minimum ignition energy of the energetic materials
at five tirnes their minimum concentration for explosion.

Phase 3

Determine the effect that reduced dust loadings have on the
minimum spark ionition energies obtained in Phase 2. Evaluate these
energies for various particle sizes and dust concentrations of three
and one times the minimum concentration for explosion of the respec-
tive materials,

The introduction of the concept of "'continuous'" vs. ''batch' pro-
duction of sensitive materials has resulted in a marked increase in the
requirement for dust control equipment, Higher production rates re-
quire the use of conveyor belts, fluidized bed dryers, continuous
casting belts, automatic weighing and bagging machines, vibratory and
weigh feeders, Proper design of dust control equipment requires a
kunowledge of the particle size distribution of the material being pro-
cessed and the effects environmenial conditions have upon the dust
explosion characteristics of the materials being produced.

Hazards Analysis requirements of ARMCOM Regulatic.. No.
385-4 specify that all hazards be classified. This classification is
based on a comparison of the mechanical, electrical and thermal input
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energies that exist, due to normal process operations, with the sensi-
tivity to initiation of the explosive material (threshold initiation level)..
Extensive investigation into the literature failed to uncover adequate
data onthe ignition sensitivities of various forms of the materials
selected for evaluation. In addition, the existing data banks did not
provide detailed information on the effects of particle size, concentra-
tion, air temperature and relative humidity on the ignition sensitivities
of these materials,




DESCRIPTION OF EXPERIMENTS

Phase 1

The experiments performed during this phase of the program
utilized three standard types of laboratory equipment developed by
the Bureau of Mines, United States Department of Labor, namely:

1. Hartmann apparatus for determining the minimum spark
ignition energy for ignition of a dust cloud,

2. Hartmann apparatus for determining the minimum con-
centration for explosion of a dust cloud.

3. Godbert-Greenwald furnace for determining the miniium
ignition temperature of a dust cloud.

Minimum Spark Ignition Energy of a Dust Cloud

The minimum electrical energy required to ignite a dust
cloud is determined in the Hartmann apparatus. This apparatue is
shown schematically in Figure 1 and pictorially in Figure 2. It
consists of a vertically mounted, seven cm diameter combustion tube,
30,5 cm long and auxiliary equipment for producing the dust dis-
persion. The tube, made of Lucite, is attached to a cylindrical
metal base (dispersion cup) by four brass bolts. Figure 3 is a photo-
graph which shows a close-up of the Lucite tube and dispersion cup
which are both wrapped with nichrome heating wire, The top of the
tube is covered with a filter paper diaphragm held in place by a locking
ring., Figure 4 is a close~up view of the brass dust dispersion cup
containing the mushroom shaped air deflector. Nichrome heating
wires are shown wrapped around the base, It is seen that the top sur-
face of the base is hemispherically shaped, The total free volume of
the test chamber is 1,23 liters. Dispersion is accomplished by a
single blast of air from the 1. 31 liter reservoir shown in Figure 5,
Air pressure in the reservoir is 69 kilopascals (kPa), The quantity
of dust dispersed is five times the minimum explosive concentration
or a maxirmum of 2 gm/liter. Coacentrations greater than 2 gm/liter
cannot be dispersed in this apparatus.

The igniting spark passes between iwo poiuted, 20 gauge
tungsten electrodes that are separated by a 0,64 cm air gap. These
electrodes are mounted 10 cm above the base of the tube, Electrical
energy for the spark ignition is obtained from the discharge of con-
densers at 100 or 400 volts, The bank of ten condensers has a
capacitance range of 2 to 100 microfarads, This combination of
voltage and cap=acitance allows energy leveis to be varied from 50 to
500 millijoules in 50 millijoule increments (at 100 volts) and from
800 to 8000 millijoules in 800 millijoule increments (at 400 volts).




The control console that houses the electronics necessary to provide
the variable electrical discharge energy is shown in Figure 6.

The energy of the spark (in joules) is calculated as 0.5 CVZ,
where C is the capacitance of the condensers in farads, and V is the
charging potential in volts. Dust cloud minimum igrition energy is
the least amount of energy required to produce flame propagation of
10 ¢cm or longer in the tube. Four trials are made at each condenser
setting; however, if the dust ignites in initial trials, lower energy is
tried until a minimum is obtained. A typical dust explosion in the
Lucite tube test chamber is shown in Figure 7.

Minimum Explosive Concentration

The minimum explosive concentration 6r the lower explo-
sive limit of a dust sample is determined in the previously described
Hartmanr apparatus, except that an induction spark igniting source
is used instead of the timed condenser discharge spark. A weighed
amount of dust is spread in a thin layer in the dispersion cup. The
top of the Hartmann tube (Lucite) is covered with a filter paper
diaphragn: held in place by a locking ring. A 0.16 cm hole is made
in the center of the filter paper to prevent pressure build-up in the
tube from the dispersing air and the tungsten electrodes are adjusted
to a gap length of 0. 48 cm. The electric spark is struck and the cur-
rent adjusted to 23. 5 milliamperes. The dust cloud is formed in the
Lucite tube by releasing air from the 1. 31 liter reservoir through
the full-port solenoid valve; optimum air pressure is 69 kPa.

Following ignition of the dust, sufficient pressure must
develop to burst the filter paper diaphragm; appearance of flame in
the tube is not considered propagation, The pressure required to
burst the paper diaphragm is about 21 kPa, depending on the rate of
pressure rise. If propagation occurs for a given weight of dust, the
weight is reduced by a five-milligram increment and another trial
made until a quantity is obtained which fails to propagate flame in any
of four successive trials., The lowest weight at which flame propagates
is used in calculating the minimum concentration. Tests are made
with the electrodes 10 cm from the bottom of the tube. Figure 8 is a
gschematic of the Hartmann apparatus for determining the minimum
concentration for explosion of a dust cloud.

Minimum Ignition Temperature of a Dust Cloud

The minimura ignition temperature of a dust cloud is deter-
mined in the Godbert-Greenwald Furnace, This furnace consists of
a 3.7 cm diameter vertical alundum tube, 23 cm long, wound with
6.4 meters of 18-gauge nichrome V wire, The windings are plac.2
closer together toward the two ends than in the middle of the tuwe to
obtain relatively even temperature throughout. The tube is mounted
between two 1.3 cm thick transite plates in a 15 cm diameter sheet
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metal cylinder with kieselguhr packing between the alundum tube and
the sheet-metal shell. A glass adapter connects the top of the tube

to a small brass chamber that has a hinged lid for inserting the dust.
A full port solenoid valve between the dust chamber and a 500-milli-
liter air reservoir controls the dispersion of the dust., The air
reservoir is connected to 2 compressed air line and a pressure gauge.
Dust contained in the brass chamber is dispersed downward through
the furnace by a single blast of the compressed air from the reservoir.
Dispersion pressure is 21 kPa, The weight of sample placed in the
brass chamber is varied in accordance with the concentration desired
in the furnace. This apparatus is depicted schematically and pictorially
in Figures 9 and 10.

The temperature in the furnace is measured with a 22-gauge
chromel-alumel thermocoupie which is located 0,08 cm from the
furnace wal! at mid-height. An automatic temperature controller
maintains the furnace temperature at the desired value. Ignition is
denoted by the appearance of flame below the mouth of the furnace,

The ignition temperature is the minimum furnace temperature at

which flame appears at the bottom of the furnace in one or more trials
in a group of four. Furnace temperature is varied in 10°C increments;
the highest temperature attained in the furnace is 750°C,

Phase 2

This phase of the program required that the Hartmann apparatus
be modified to allow for the control of air temperature and relative
humidity. A complete description of this modification is presented in
Appendix B under the test air environmental control methods section.
Dust cloud concentrations were maintained at five times the minimum
concentrations for explosion established in Phase 1., Once again the
criterion for selecting the threshold minimum ignition energy level was
four negative results below the last positive result for either a 0.05
or 0. 80 joule energy interval.

The environmental test air conditions for the Hartmann apparatus
on this phase of the program were 24°C at 2, 50 and 76% relative
humidities and 52°C at 2, 39 and 58% relative humidities.

Phase 3

The unmodified Hartmann apparatus was used on this phase of the
program to determine the effect of dust concentration on minimum
ignition energy. Dust concentrations of three and one times the mini-
mum concentration for explosion were used, Test air was maintained
at 24°C and one percent relative humidity. Previously described test
procedures were followed.,
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EXPERIMENTAL RESULTS

Tables 1 through 3 present the results of the tests performed on
piztase 1 of this program while Tables 4 and 5 present results for
phases 2 and 3 respectively. Figures 1] through 32 graphically
present the data contained in all five tables.

Phase 1
Minimum Explosive Concentration

Results of this test series are presented in Table 1 and
Figures 11 and 12, It is seen that 200 mesh M-1 has the lowest mini-
mum concentration for explosion followed by 200 meash M-~30, 100
mesh Comp B and classes 1 and 3 HMX. Figure 11 shows that both
M-1 and M-30 had their highest minimum concentrations for explosion
at the smallest particle sizes. This phenomenon is explained by the
observed tendency for the 44 micron particles to hold an electrostatic
charge and agglomerate. The net effect is that they cling to themi-
selves and behave as much larger particles in the test apparatus.

Composition B appears to behave differently from the two
propellants, Its minimum concentration for explosion decreaseg as
its particle size increases. This is also attributed to the electro-
static charging phenomenon. HMX reaches its lowest value of minimum
concentration for explosion at classes 1 and 3 particle sizes.

Minimum Ignition Energy of a Dust Cloud

Table 2 presents the results of this series of tests. It is
apparent that M-1 and Comp B are the two most sensitive materials
followed by M-30 and HMX. Figures 13 and 14 show M-1, M-30 and
Composition B all plateau out at the 44 and 74 micron particle size
ranges. As expected, the highest minimum ignition energies occur
at th. largest particle sizes for all four materials, The general rule
that the minimum ignition energy increases with increasing sample
particle size is followed in this case.

Minimum Ignition Temperature of a Dust Cloud

Results of the minimum ignition temperature tests for
dispersed dust clouds of the four sample materials are presented in
Table 3, Variations in ignition temperature as a function of particle
size and dust cloud concentration are presented, Figures 15 and 16
graphically illustrate the effect of particle size on ignition temperature
for a fixed dust cloud concentration. M-1 has the lowest minimum
ignition temperature (210°C) followed by M- 30 (230°C). Both of these
minimums occurred at the 44 micron particle size range. Compo-
sition B ignites at 360°C and 44 micron particle size, Reducing the
loading by 0.1 gm/> resulted in a 30°C drop in ignition temperature.

3
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Class | HMX ignited at 350°C at a 0.92 gm/] concentration. Itis
apparent from the broad ranges of ignition temperatures found in
Figure 16 that the ignition temperature of HMX is very sensitive to
particle size and dust concentration. The spread of ignition tem-
peratures for HMX lies betwecn 350°C and 750°C.

Phase 2
Minimum Ignition Energy, Controlled Environmental Air

Table 4 presents the results of the experimental effort
perfcrmed on this phase of the program, Figures 17 through 24 pre-
sent minimum ignition energy as a function of relative humidivy for
the four samples evaluated. Figures 25 through 28 show the effect of
particle size on minimum ignition energy. Careful study of Figures
17 and 18 reveals that the trend is for the minimum ignition energy of
M- propellant to increase with increasing relative humidity. The
lowest value of minimum ignition energy for M-1 always occurs at the
2 percent relative humidity point, Variations inignition energy are
significant between humidity levels at fixed temperatures.

Figures 19 and 20 present the results for M- 30 propeilant.
The san:e trend is seen to exist, increased ignition energy at increased
refative humidity, A minimum value of ignition energy occurs at the
44 micron particle size range at the 2 percent relative humidity level,
Comparison of M-1 and M-30 data reveals that the M-1 is more sensi-
tive (0. 20 joules) than the M-30 (0. 30 joules) at the 2 percent relative
humidity values,

Coimposition B results plotted in Figures 21 and 22 follow the
saine pattern esftablished by the two propellants. The lowest value of
igunition energy (0. 2L joules) occurred at the finest particle size, 44
microns, and the 2 percent relative humidity value, Relative humidity
and temperatureaffect the results by factors of up to 20 times the
minimum value of 0. 20 joules,

The results of the minimum ignition energy tests on HMX
arc presented in Figures 23 and 24, Values of ignition energy greater
th&n 8 jouleg were plotted as 8 joules for lack of a better way of pre-
senting the data. A general trend exists for the ignition energy to
increase with increasing relative humidity., The lowest value of I, 60U
joules occurred at the 2 percent relative humidity value for the class
1 material, Throughout this report it is noted that the HMX data is
the least consistent of the four materials tested, This is attributed to
the broad range of particle sizes found in the classes 1 and 3 material
(see Table B-1), The reproducibility of each data point is dependent
upon the particle size distributicn of each test sample. The broader
that this distribution is, the more random will be the results of the
ignition energy tests.
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Figure 25 presents plots of minimum ignition energy versus
particle size for M-1 propellant at two teraperatures and three
relative humidities. It is seen that for the 52°C data the lowest
ignition energies, for a given relative humidity curve, occur at the
74 micron particle sivze range. Differences between the 39 and the
2 percent relative humidity values disappear at the 149 micronparticle
size range. Examination of the 24°C graph reveals that the highest
ignition energy values occurred at the 74 micron particle size point.
This result is contrary to all of the other data observed in this phase
of the program., The reason for this discrepancy is not known.

Results of the tests on M-30 are presented in Figure 26,
The trend is for the minimum ignition energy to increase with increas-
ing particle size. Definite differences in results due to relative
humidity are readily apparent. In general, increasging the relative
humidity and particle size increases the minimum ignition energy.

Compositicn B test results are shown in Figure 27. Particle
size has little effect in the 44 to 74 micron range., Above these values,
the ignition energy increases substantially, Looking at the 24°C graph,
it is seen that the minimum energy increases from 0. 20 joules at 2
percent relative humidity to 1.60 joules at 76 percent relative humidity.
This is significant because in a process operation it is likely that an
ungrounded, conductive element can store and discharge 0.20 joules.
However, it is highly unlikely that the same piece of equipment will
be able to accumulate 1. 60 joules of electrical energy.

Figure 28 shows the variation in minimum ignition energy
with particle size for HMX at two air temperatures and three relative
humidities, The lowest values of ignition energy occur at the class 1
points, It is seen that the most sensitive condition (1.6 joules) occurs
at the class 1 size at 2 percent relative humidity and 24°C air tem-
perature,

Phase 3
Minimum Ignition Energy at Reduced Concentrations

Table 5 presents the results of the test effort expended on this
phase of the program, Figures 29 through 32 graphically illustrate
the data contained in the table. All of the data in these four figures have
the same characteristic. Namely, the minimum ignition energy
increases markedly as the concentration is decreased from 5 to 3 to
1 titnes the minimum concentration for explosion. For example, M-1
at 149 micron particle size has @ minimum ignition energy of 0. 25
joules at 0.25 gm/l. This value rises to 1.6 joules at 0, 15 gm/l and
is greater than 8 joules at 0.05 gm/1 (the minimum concentration for
explosion). The significance of this finding is readily apparent in
hazards analysis work, It is currently common practice to evaluate
dust explosion hazards by calculating the electrical energy available
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in a given process operation and coxiparing this value with the mini-
mum ignition energy of the material. No allowance is made for the
fact that the minimum ignition energy is based on concentrations that
are 5 to 10 times the minimum concentration for explosion. This
oversight introduces factors of safety which are so large that they
make the calculaiion of the probability of the event occurring a fruit-
less exercise. Data presented in this report should be useful to the
hazards analysis investigator because it will allow him to.more
realistically evaluate a specific situation.
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CONCLUSIONS

As a result of the dust phase explosion tests performed on this
program on M-1, M-30, Composition B and HMX it is possible to
conclude the following:

l. M-1 has the lowest minimum concentration for explosion
followed by M-30, Comp B ana HMX.

2. Particles of M-1 and M-30 below the 74 micron range tend to
agglomerate and cling to themselves due to an electrostatic charging
phenomenon.  The result is that they yield higher minimum con-
centrations for explosion than the 74 micron particles.

3. The minimum ignition energy increases with increasing sam-
ple particle size. M-1 and Comp B are the two most sensitive to
electrostatic discharge followed by M-30 and HMX.

4. As the particle size increases, the minimum ignition tem-
perature increases., M-1 has the lowest minimum ignition temperature
followed by M-30, Comp B and HMX.

5. The minimum ignition energy of all four materials increases
' with increasing test chamber relative humidity, Lowest values of
ignition energy occurred at the 2 percent relative humidity point for
each of the four materials tested.

6. The minimum ignition energy of the four materials increases
markedly as the dust cloud concentration is decreased from 5 to 3 to
l times the minimum concentration for explosion.

7. Hazards analysis of electrostatic discharge potentials in a
given process must be based upon consideration of the effect of con-
centration on minimum ignition energy (current practice isto use
ignition energies which are obtained at 5 to 10 times the minimum con-
centration for explosion),

11
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RECOMMENDATIONS

It is recommended that implementation of the following items
be considered:

1. Results obtained from this program should be incorporated
into a standard hazards analysis data bank.

2. Additional explosive and propellant materials should be tested
for the effects of particle size, dust cloud concentration and relative
humidity on the minimum concentration for explosion, minimum
ignition energy and minimum ignition temperature.

3, Obtain dust samples from in-process operations at Army
Ammunition Plants and establish the potential explosion hazard by
comparing the sampled concentrations with the measured data generated
by this program.

12
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Table 1. Results of minimum concentration for
explosion tests

Minirnum explosive

U. S. sieve concentration

Sample number@ (gm/1)
M-1 100 0.05
200 0.04
325 0.06
M-30 100 0.07
200 0.05
325 0.12
Comp B 100 0.06
200 0.08
325 0.09
HMX Class 1P 0.50
Class 3 0.50
Class 5 1.00

2Material passed through the sieve indicated.
Appendix A definscs class particle size designations.
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Table 2. Results of minirhum ignition energy of
du. ¢ cloud tests
{ Min. ign, energy
y U.S. sieve Concentration Go No Go
= Sample number?@ (gm/1) (joules) (joules)
M-1 100 0.25 0.25 0.20
200 0.20 0.20 0.15
0.15 0,20 0.15
i 325 0. 30 0.20 0.15
0.25 0.20 0.15
M- 30 100 0.50 0.50 0.45
0. 35 0.40 0.35
200 0.25 0.25 0.20
| 325 0. 60 0.25 0.20
Comp B 100 0.50 0.45 0.40
0. 30 1.60 0.80
0.25 1.60 0.80
. 200 0. 40 0.20 0.15 .
0,35 0.20 0.15
325 0.45 0.20 0.15
0.40 0.20 0.15
HMX Class 1P 2. 00 0.45 0. 40
Class 3 2.00 5.60 4,80
Class 5 2.00 4,00 3.20

&Material passed through the sieve indicated.
bAppendix A defines class particle size designations.
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Table 3. Results of minimum ignition temperature of
dust cloud tests

Minimum ignition

U. S, sieve Concentration temperature

Sample number? (gm/1) (°C)
M-1 100 0. 46 22¢
0. 37 230

200 0.37 240

0.27 240

325 0.55 210

0.46 210

M-30 100 0.92 250
0.64 250

200 0.92 230

0.64 240

325 0.92 230

0.64 230

Comp B 100 0.92 390
0.55 350

‘ 0.46 430
200 0.92 360

0.73 350

0.64 380

0. 46 430

325 0.92 360

0.83 330

0.73 360

b

HMX Class 1 1.38 380
0.92 350

Class 3 1. 38 690

0.92 >750°

Class 5 1. 38 680

0.92 > 750

3 Material passed through the sieve indicated.
Appendix A defines class particle size designations,
CThe Godbert-Greenwald furnace could not be heated past 750°C.
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Table 5. Results of minimum ignition energy tests at
reduced dust concentrations

Min. ign. eneggy*

U.S. sieve Concentration "Go No Go
Sample number? (gm/1) {joules) (joules)

M-1 100 0.15 1. 60 0. 80
0.05 >8.00 8. 00
200 0.12 0. 30 0.20
0.04 7.20 6. 40
325 0.18 0.20 0.10
0.06 2,40 1. 60
M-30 100 0.21 3. 20 2.40
0.07 >8.00 8. 00
200 0.15 3. 20 2. 40
0.05 >8.00 8. 00
325 0. 36 0. 80 0.50
0.12 1. 60 0. 80
Comp B 100 0.18 2. 40 1. 60
0. 06 >8.00 8. 00
200 0.24 0.20 0.10
0.08 2,40 1. 60
325 0.27 0.20 0.10
0.09 0.80 0.50
HMX Class 1 1.50 2. 40 1. 60
0.50 6. 40 5.60
Class 3 1. 50 >8.00 8. 00
0.50 >8.00 8. 00
Class 5 1.50 >8.00 8. 00
0.50 >8.00 8. 00

*¥A11 data were obtained using 24°C test air containing one percent
relative humidity.
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Table 6. Summary of ambient minimum concentration,
energy and temperature test results

Min, expl. Min, ign. en. Min, ign. temp.
Sieve conc., Conc, Ener Conc. Temp.

Sample no. {gm/1) {gm/T) (oules) {gmT7l) ME%
M-1 100 0.05 0.25 0.25 0. 46 220
0.37 230
200 0.04 0.20 0.20 0.37 240
0.15 0.20 0.27 240
325 0.06 0. 30 0.20 0.55 210
0.25 0.20 0. 46 210
M-30 100 0.07 0.50 0.50 0.92 250
0. 35 0.40 0.64 250
200 0.G5 0.25 0.25 0.92 230
0.64 240
325 0.12 0.60 0. 25 0.92 230
0.64 230
Comp B 100 0.06 0.50 0. 45 0.92 390
0. 30 1.60 0.55 330
0.25 1. 60 0. 46 430
200 0.08 0. 40 0.20 0.92 360
0. 35 0.20 0.73 350
0.64 380
0. 46 430
325 0.09 0. 45 0.20 0.92 360
0.40 0.20 0.83 330
0.73 360
HMX Class 1 0.50 2.00 0.45 1.38 380
0.92 350
Class 3 0.50 2.00 5. 60 1. 38 690
0.92 » 750
Class 5 1,00 2,00 4,00 1.38 680
0.92 >750
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Table 7. Summary of ignition energy tests,
controlled environment

Sieve  Temp. R. H., Minimum ignition energy? (joules)
no. (°C) (%) M-1 M-30 CompB  HMXP

100 52 58 1.60 3,20 4,80  7.20

52 39 0.40  2.40 4,00 4. 80 .

52 2 0. 40 1,60 0.50 2,40 ]

24 76 0.40  2.40 4, 80 6.40 -
24 50 0.40 1. 60 4,00 4,80
24 2 0,20  0.50 2,40 1.60
200 52 58 0. 40 1. 60 2. 40 > 8.00
52 39 0.30 1. 60 1.60 >8,00
52 2 0.20  0.40 0.30 3,20
24 76 0.80 1.60 1. 60 >8.00

24 50 0.80 1. 60 1. 60 6. 40 .
24 2 0.30  0.40 0. 30 > 8,00
325 52 58 0.50 1,60 2,40 8.00
52 39 0.40  0.30 1. 60 7.20
52 2 0.20  0.30 0. 30 >8,00
: 24 76 0.50 0. 50 1. 60 >8.00
: 24 50 0.40  0.50 0. 80 >8,00
24 2" 0,20 0.30 0.20 8.00

Table 8. Summary of ignition energy tests,
reduced dust concentrations

Minimum ignition energy

"M-1 M-30 Comp B HMXDb =

Sieve Conc. Ener Conc, Ener Conc, Energ; Conc. Ener _'

no. {(gm/1) (jouleg-sx) {gm/l) {joules) l_&m?l) (joules) (gm/l) (_]'Eulegé% t

100 0.15 1. 60 0.21 3.20 0.18 2,40 1.50 2,40 '
0.05 >8.00 0.07 >8.00 0.06 >8,00 0.50 6,40

200 0.12 0.20 0. 15 3,20 0.24 0.20 1. 50 >8.00 s

0.04 7.20 0.05 > 8,00 0.08 2. 40 0.50 >8.00 v

325 0.18 0.20 0. 36 0.80 0.27 0,20 1,590 >8.00
0.06 2.40 0.12 1. 60 0.09 0. 80 0.50 > 8.00

a8See Table 4 for dust concentrations, :o‘

bsieve numbers 100, 200 and 325 are replaced by classes 1, 3 and 5 ¢
for HMX, .
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Figure 3. Heated Hartmann Lucite tube
and dust dispersion cup.
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Flectronic control console,

Figure 6.
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Figure 7.

Dust explosion in Lucite tube.
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ignition temperature of a dust cloud apparatus.
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Figure 11, Minimum concentration for explosion "\
g A versus particle size, M-1 and M-30
N propellants,
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Figure 13, Minimum spark ignition energy
versus particle size, M-1 and
M- 30 propellants.
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Minimum spark ignition energy, joules
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Figure 14, Minimum spark ignition energy

versus particle size, Compo-
gition B and HMX explosives,

36

NANE T TN m’,’w L3 N — """'-:“‘ITU - AP W GN  pmainadii Cy e R v e e




250 g
M-1
240 -
230 |
210 |-
O
)
o 200 L
N
&
o
M 1 1 L
g* <44 <74 <149
9 Particle size, microns
g
0
o 250 =
o M‘ 30 N
g
)
&
|
g 240 |- .
230
L ! L
<44 <74 <149 e
Particle size, microns e
Figure 15. Minimum ignition temperature of dust clouds i
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380 I
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Minimum ignition temperature, ~C
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- 600 |- '
500 I
400
300
200 |
y 5 1 3 o
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? Figure 16, Minimum ignition temperature of dust clouds )
versus particle size, Composition B and p
HMX explosives.,
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Figure 17. Minimum spark ignition energy
vergus relative humidity, M-1
propellant, particle size < 149
and £ 74 microns.
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Figure 18. Minimum spark ignition energy :
versus relative humidity, M-1
propellant, particle size € 44
microns.
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Figure 19. Minimum spark ignition energy
versus relative humidity, M-30
propellant, particle size € 149
and £ 74 microns,
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Figure 20. Minimum spark ignition energy
versus relative humidity, M-30
propellant, particle size £ 44
microns.
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Figure 21, Minimum spark ignition energy
versus relative humidity, Compo-
sition B explosive, particle size
€149 and £74 microns,
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Figure 22, Minimum spark ignition energy

versus relative humidity, Compo-
sition B explosive, particle size
S 44 microns.
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Figure 24, Minimum spark ignition energy
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explosive, particle size class 3,
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versus particle size, M-30
propellant,

48

T e R T T R e S e S g s hran. g s 1 s e

N




Minimum spark ignition energy, joules

v

6.00

5.00

4,00

3,00

2.00

1.00

6.00

5.00

4,00

3.00

2,00

1. 00

Compocsition B at 52°C

o= 5870 R. Ho
J=39% R.H.
— A= 2% R,H.
=
_______ A
B bt Sy
< 44 <74 €144
Particle size, microns
Composition B at 240C
0= 76070 R, H.
(l1=50% R, H.
r‘ A = 270 Ro Ho
-
=

<44 S 74 < 144
Particle size, microns
Figure 27, Minimum spark ignition energy

versus particle size, Compo-
sition B explosive,
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APPENDIX A

MATERIALS AND EQUIPMENT
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MATERIALS AND EQUIPMENT

Materials

The following materials were supplied by ARRADCOM for use
in this test program:

(1) HMX, Grade B, Classes 1, 3 and 5, Lots GHBC-4,
6HG5-3, 6HCC-11A2

(2) Composition B, Grade A, Spec. Mil C 0040 A,
Lot HOL-053-5068 (screened)

(3) M-30 Propellant, Mil P-46458, Lot RAD 67595
(Class 2)

(4) M-1 Propellant
Equipment
ARRADCOM supplied the following equipment:

(1) Aqua Test II, Model #702 by Photo Volt Corporation,
S/N 1095 (automatic Karl Fischer titrator)

Hazards Research Corporation supplied the following equipment:
(1) Hartmann Explosibility Apparatus

(2) Godbert-Greenwald Furnace

(3) Moulinex grinder

(4) Tyler Sieve Shaker

(5) U.S. Sieves, No., 100 (149 micron opening), No. 200
(74 micron opening), No. 325 (44 micron opening)
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DESCRIPTION OF EXPERIMENTAL METHODS

Sample Preparation

Composition B, M-1 and M-30 samples that satisfied the through
100, 200 and 325 U. S. sieve size requirement were not readily
available for use on this program. Consequently, HRC prepared the
samples by remotely impact grinding the dry materials, The samples
were prepared in 20 gram batches. Each batch was made by subjecting
the material to the grinding action for between 20 and 60 seconds.
Duration was the controlling parameter for particle size reduction.
Final particle size clagsification was accomplished by sieving the sam-~
ple through the appropriate U.S. series sieve, All samples were then
stored in air tight containers for future testing.

HMX samples were tested as received from the Government,
Three granulations were supplied, classes 1, 3 and 5. Military speci-~
fication H-45444 B (PA) contains the particle size distribution for these
three classes of HMX. This data is extracted from the specification
and presented in table B-1 below:

Table B-1. HMX granulation specification

Through U. S.

standard Class 1 Class 3 Class 5
sieve no. Percent Percent Percent
12 99 min
50 90+ 6 40 + 15
100 50+ 10 20F 10
200 20F 6 107F 10
325 8F5 - 98 min

It is observed that the class 5 HMX contains the smallest par-
ticles followed by classes 1 and 3 in order of increasing particle size,

U. S. standard sieve numbers and corresponding sieve openings
are presented in Table B-2 for future reference,

Table B-2. U.S. sieve openings

Sieve Sieve
designation opening
(no. ) (microns)
12 1680
50 297
100 149
200 74
325 44
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Sample Volatiles Content

The volatiles content of each material was determined by vacuum
drying it for 6 hours at 60°C, Table B-3 presents the results of the
volatiles content determinations.

Table B-3., Volatiles content of Comp B, HMX, M-1 and
M-30 samples

Percent

Sample Particle size volatiles
Composition B thru 100 mesh 0.27
thru 200 mesh 0.53
thru 325 mesh 0.40
HMX Class 1 0.05
Class 3 0.02
Class 5 0.00
M-1 thru 100 mesh 0.56
thru 200 mesh 0.51
thru 325 mesh 1.30
M-30 thru 100 mesh 4,20
thru 200 mesh 2. 70
thru 325 mesh 2.60

Test Air Environmental Control Methods

In order to meet the objectives of Phase 2, it was necessary to
develop a technique for controlling the temperature and relative
humidity of the air in the Hartmann apparatus. The goal was to sub-
ject each dust cloud to a specific environmental condition and to
determine the effect this condition had on the minimum ignition energy.
Table B-4 contains the two air temperatures and the three corre-
sponding relative humidities that were selected.

Table B-4, Environmental test conditions for
Hartmann apparatus

Test Air temp. Rel. Humidity

condition (eC) (%)

1 24 2

2 24 50

3 24 76

4 52 2

5 52 39

6 . 52 58
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Temperature Control ,
Air temperature inside of the air reservoir and the Lucite
test chamber was raised to either 240C or 520C using fiberglass
wrapped, nichrome heating ribbon. Electrical power to the heating
ribbon was controlled using a variable autotransformer. Thermo-
couples placed inside of the air space of the air reservoir and Lucite
tube monitored their air temperatures. Heating ribbon was wrapped
around the base of the dust dispersion cup to accelera‘e ite heating
rate., Adjustments were continuously made to thhe 2 ¢ {rvansformer
until the desired steady state air temu=ragure was a - ..ved. Figures
3, 4 and 5 show the heated components igdletail,
‘ i

Relative Humidity Control

The relative humidities reported in this program were
attained by syringing calculated amounts of water into the heated air
reservoir and dust dispersion cup., After the water vaporized, the
reservoir was discharged into the Lucite tube., A sample of air from
the tube was withdrawn, using a syringe, and analyzed for water con-
tent in the Photovolt Aquatest II, automatic Karl Fischer titrator.

This procedure was repeated until the results were reproducible.
¥ifteen reproducible trials were performed at each temperature and
relative humidity condition before the dust samples were introduced
into the apparatus. Therefore, the environmental test air conditions
presented in this report represent experimentally measured quantities,
The 2 percent relative humidity values were obtained by purging dry,
bottled compressed air ithrough the Hartmann apparatus for two minutes
prior to activating the '"fire' switch,

Test Procedure For Obtaining Calibrated Environmental Air
Conditions

The ex.~ iment was started by turning on the following
efuipment:

1. Air pressure (cylinder of dry air)

2., Power supply

3. Heating tapes

4. Potentiometer (thermocouple readout)

5. Photovolt -~ Aquatest II

Adjustments to the following items were then made:

1, Air pressure (69 k Pa)
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2. Power supply (adjust energy setiing between 50
and 8000 mj)

3. Heating tapes (24°C or 52°C)

4, Potentiometer (read millivolt output of iron
constantan thermocouples)

5. Photovoli~-Aquatest II (ready to receive sample}

The following sequence of operations was performed for
each test cycle:

1. Distilled water was syringed into the brass
reservoir and pressurized to a final pressure of
69 k Pa at the desired temperature,

2. Distilled water was syringed into the brass dust
dispersion cup of the Lucite Hartmann tube.

3. The Lucite tube was secured and the high voltage
leads were connected to the electrodes.

4, Fifteen minutes was allowed to elapse for vapori-
zation of the water to cccur,

5. The "fire'" switch on the power supply was activated,

6. An air sample wis removed from the Hartmann tube
using a syringe. This sample was injected into the
iiquid solution cof the automatic titrator. The parts
per million of water in the air sample was read
directly from the titrator,

Minimum Ignition Energy Tests Under Controiled Environmental
Air Conditions

All tests conducted on the energetic materials followed the
procedures described above. The only differences were the intro-
duction of a weighed amount of explosive sample after the 15 minute
vaporization period had elapsed and the elimination of the sixth item
{air  vmple removal).
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